Abstract

ABSTRACT Although quasi-Keplerian discs are among the most common astrophysical structures, computation of secular angular momentum transport within them routinely presents a considerable practical challenge. In this work, we investigate the secular small-inclination dynamics of a razor-thin particle disc as the continuum limit of a discrete Lagrange–Laplace secular perturbative theory and explore the analogy between the ensuing secular evolution – including non-local couplings of self-gravitating discs – and quantum mechanics. We find the ‘quantum’ Hamiltonian that describes the time evolution of the system and demonstrate the existence of a conserved inner product. The lowest-frequency normal modes are numerically approximated by performing a Wick rotation on the equations of motion. These modes are used to quantify the accuracy of a much simpler local-coupling model, revealing that it predicts the shape of the normal modes to a high degree of accuracy, especially in narrow annuli, even though it fails to predict their eigenfrequencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.