Abstract

The average entanglement entropy (EE) of the energy eigenstates in non-vanishing partitions has been recently proposed as a diagnostic of integrability in quantum many-body systems. For it to be a faithful characterization of quantum integrability, it should distinguish quantum systems with a well-defined classical limit in the same way as the unequivocal classical integrability criteria. We examine the proposed diagnostic in the class of collective spin models characterized by permutation symmetry in the spins. The well-known Lipkin-Meshov-Glick (LMG) model is a paradigmatic integrable system in this class with a well-defined classical limit. Thus, this model is an excellent testbed for examining quantum integrability diagnostics. First, we calculate analytically the average EE of the Dicke basis{|j,m⟩}m=−jjin any non-vanishing bipartition, and show that in the thermodynamic limit, it converges to1/2of the maximal EE in the corresponding bipartition. Using finite-size scaling, we numerically demonstrate that the aforementioned average EE in the thermodynamic limit is universal for all parameter values of the LMG model. Our analysis illustrates how a value of the average EE far away from the maximal in the thermodynamic limit could be a signature of integrability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.