Abstract

SummaryHermitian (symmetric) eigenvalue solvers are the core constituents of electronic structure, quantum‐chemistry, and other HPC applications such as Quantum ESPRESSO, VASP, CP2K, and NWChem to name a few. Our understanding of the performance of symmetric eigenvalue algorithms on various hardware is clearly important to the quantum chemistry or condensed matter physics community but in fact goes beyond that community. For instance, big data analytics is increasingly utilizing eigenvalues solvers, in the study of randomized singular value decomposition (SVD) or principal component analysis (PCA). Noise, vibration, and harshness (NVH) is another field where fast and efficient eigenvalue solvers are required. Most eigenvalue solver packages feature numerous different parameters which can be tuned for performance, eg, the number of nodes, number of total ranks, the decomposition of the matrix, etc. In this paper, we investigate the performance of different packages as well as the influence of these knobs on the solver performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.