Abstract

At present, wood particles (wood flour) with a low aspect ratio are mostly used as fillers in wood-plastic composites (WPC). Reinforcement of WPC and improved strength properties may be achieved by using real wood fibres with a high aspect ratio. WPC based on 70% (wt.) refiner (TMP) wood fibres and mechanically processed hemp fibres were extruded in a two-step process. Eleven compounds based on the two natural fibre types were prepared using a thermokinetic mixer and extruded in a conical, counter-rotating twin-screw extruder. Additional formulation components were polypropylene fibres, maleic anhydride-modified polypropylene (MAPP) and lubricant. It was determined that compounding in a thermokinetic mixer is a useful step for processing of WPC with refiner and hemp fibres as little fibre damage occurred. However, during extrusion, both natural fibre types were severely shortened due to strong shear forces, and homogeneous dispersion of fibres in the matrix was not achieved. WPC based on hemp fibres displayed the best strength properties of the formulations tested. Current extruder screw and die configurations need to be modified to achieve improved fibre reinforcement and to create new, structurally demanding applications for WPC. Using dynamic mechanical analysis, fibre-matrix adhesion of WPC was investigated, and activation energies for glass transition of selected formulations were calculated. Activation energy for formulations containing MAPP was higher than for WPC without MAPP. This indicates that better fibre-matrix adhesion was achieved in formulations with MAPP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.