Abstract
In this paper the eigenmodes of finite length microring resonator arrays have been systematically studied, both analytically using temporal coupled mode theory (CMT), and numerically using two-dimensional finite element method (FEM). The method for obtaining the values of parameters appearing in simplified CMT model using results of FEM calculations is presented. Calculations were carried out by COMSOL FEM packages for a wide range of distances between the rings. The obtained results reveal that the rotational degeneracy is preserved for a wide range of interrings distances. It is shown how the eigenvalue spectrum depends on the number of cavities in the system. The differences for the cases of odd and even numbers of rings, and its implications on actual applications, are discussed in details. The central branch appearing in odd-number arrays plays significant role for the delay-lines and optical buffering applications. Based on the first order perturbation theory, an analytical expressions for the eigenfrequencies of arbitrary (finite) length linear array of microring resonators are derived. The analytical expressions describing eigenfrequencies are useful for determining positions of the maxima in transfer characteristics in microring arrays with external buses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.