Abstract

Modal cross coupling usually exists in wavefront estimation through Zernike polynomials. In order to cope with the problem, the eigenfunctions of Laplacian with Neumann boundary condition are proposed instead of Zernike polynomials to reconstruct phase from wavefront gradient or curvature sensing. It is proved theoretically that these modals can avoid modal cross coupling in both wavefront gradient sensing and curvature sensing. In wavefront gradient sensing, the coefficients of eigenfunctions of Laplacian can be obtained from the integral of the scalar product between the gradient of Laplacian's eigenfunctions and wavefront gradient signal. In wavefront curvature sensing, the coefficients of eigenfunctions of Laplacian can be calculated from the integral of the product of Laplacian's eigenfunctions and wavefront curvature signal. This approach is applicable on arbitrary apertures as long as eigenfunctions of Laplacian on apertures of arbitrary shape can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.