Abstract
We study existence and absence of \ell^2 -eigenfunctions of the combinatorial Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular convex polygons. We show that exactly two of these tilings (namely the (3.6)^2 “kagome” tiling and the (3.12^2) tiling) have \ell^2 -eigenfunctions. These eigenfunctions are infinitely degenerate and are constituted of explicitly described eigenfunctions which are supported on a finite number of vertices of the underlying graph (namely the hexagons and 12-gons in the tilings, respectively). Furthermore, we provide an explicit expression for the Integrated Density of States (IDS) of the Laplacian on Archimedean tilings in terms of eigenvalues of Floquet matrices and deduce integral formulas for the IDS of the Laplacian on the (4^4) , (3^6) , (6^3) , (3.6)^2 , and (3.12^2) tilings. Our method of proof can be applied to other \mathbb Z^d -periodic graphs as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.