Abstract
This work presents a method for the design of quadrature mirror filters. A new frequency weighted stopband energy function is introduced, which leads to considerable flexibility in the design process. Unlike other techniques which involve searches and nonlinear optimization, our formulation reduces the design equations to an eigenvector problem. Furthermore, the resulting filters are regular and have additional desirable properties for applications to pyramidal coding of images, which together with DPCM, PCM, vector quantization, or zero-tree wavelet coding schemes leads to high compression ratios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.