Abstract
Introduction The ambiguity regarding the geological interpretation has the potential to be significantly decreased with the use of remote sensing, geophysical data, and the history of geology. Aims The objective of this work is to delineate geological lineaments and faults using EIGEN-6C4 satellite gravity and ALOS PALSAR radar data in the north Ghadames basin, of northwest Libya. Methods The satellite gravity dataset of the study region was used to perform a complete Bouguer anomaly map of the study area to start the gravity interpretation. Then different filters were performed on the gravity dataset, such as the total horizontal gradient (THG), CET grid analysis, 3-dimensional Euler solution (ED), and a tilt derivative (TDR) using the commercial Oasis Montaj programme. The techniques of edge identification (THG, TDR, and also CET grid analysis) are utilised for locating and identifying the boundaries or edges of geological structures that contribute to gravity anomalies. The 3-dimensional Euler solution, in conjunction with the TDR method, is employed to precisely figure out the positions and estimated depths associated with subsurface sources. Radiometric calibration, speckle filtering, and geometric correction were applied to preprocess the ALOS PALSAR L 1.1 image via the Sentinel Application Platform (SNAP) software. For automatic extraction, the PCI Geomatica software's LINE module was applied. Results The gravity data results indicate that the main trends of the identified geological lineaments are oriented in the North-South, East-West, Northwest-Southeast, and North-Northwest to South-Southeast directions. Furthermore, the depths of the sources observed underneath the study region differ from 250 m to 2750 m. The orientation of extracted lineaments from the ALOS PALSAR L1.1 images, specifically the horizontal-horizontal as well as horizontal-vertical polarisation images, predominantly have orientations in the north-south, north-northeast to south-southwest, east-west, north-northwest to south-southeast, and northeast-southwest directions within the study area. Conclusion All these findings of lineaments are associated with the tectonic features of the area. Consequently, identifying these lineaments/faults is important to reduce the ambiguity of geological interpretation and provide more information on the dominant trends for future exploration activities in the study region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Open Construction & Building Technology Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.