Abstract

Keratins 8 and 18 (collectively referred to as K8/K18) are the major components of intermediate filaments of simple epithelial cells. Recent studies have revealed the function of K8/K18 in apoptosis modulation. Here, we show that eIF3k, originally identified as the smallest subunit of eukaryotic translation initiation factor 3 (eIF3) complexes, also localizes to keratin intermediate filaments and physically associates with K18 in epithelial cells. Upon induction of apoptosis, eIF3k colocalizes with K8/K18 in the insoluble cytoplasmic inclusions. Depletion of endogenous eIF3k de-sensitizes simple epithelial cells to various types of apoptosis through a K8/K18-dependent mechanism and promotes the retention of active caspase 3 in cytoplasmic inclusions by increasing its binding to keratins. Consequently, the cleavage of caspase cytosolic and nuclear substrates, such as ICAD and PARP, respectively, is reduced in eIF3k-depleted cells. This study not only reveals the existence of eIF3k in a subcellular compartment other than the eIF3 complex, but also identifies an apoptosis-promoting function of eIF3k in simple epithelial cells by relieving the caspase-sequestration effect of K8/K18, thereby increasing the availability of caspases to their non-keratin-residing substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.