Abstract

Abstract In a recent study, we showed that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two common omega-3 fatty acids, can cause ROS accumulation and subsequently induce caspase-8-dependent apoptosis in human breast cancer cells in vitro and in vivo. In this study, we showed that the pancreas has a unique ability to accumulate EPA at a level markedly higher than several other tissues analyzed. Based on this finding, we sought to further investigate the anticancer actions of EPA and its analog DHA in human pancreatic cancer cells using both in vitro and in vivo models. EPA and DHA were found to induce ROS accumulation and caspase-8-dependent cell death in human pancreatic cancer cells (MIA-PaCa-2 and Capan-2) in vitro. Feeding animals with a diet supplemented with 5% fish oil, which contains high levels of EPA and DHA, also strongly suppresses the growth of MIA-PaCa-2 human pancreatic cancer xenografts in athymic nude mice, by inducing oxidative stress and cell death. In addition, we showed that EPA can concomitantly induce autophagy in these cancer cells, and the induction of autophagy diminishes its ability to induce apoptotic cell death. It is therefore suggested that combination of EPA with an autophagy inhibitor may be a useful strategy in increasing the therapeutic effectiveness in pancreatic cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.