Abstract

Eicosanoid metabolism through cyclooxygenases (COXs) and lipoxygenases (LOXs) generates various lipids that play a role in squamous cell carcinogenesis. We used pairs of head and neck squamous cell carcinoma (HNSCC) cell lines derived from primary and metastatic tumors of the same patient to analyze eicosanoid metabolites by ESILC/ MS/MS and COX/LOX expression by western immunoblotting. The effects of celecoxib on eicosanoid synthesis and HNSCC cell growth were examined. Prostaglandin E2 (PGE2) was the major metabolite in three of six cell lines. COX-2 was detected in three cell lines, which produced PGE2 (two from metastases). We found low expression of COX-1 at similar intensities for each pair of cell lines. 5-LOX was detected in all cells. Some expressed 12-LOX, 15-LOX-1, and 15-LOX-2, but there was no correlation between enzyme expression and endogenous product content. Exogenous arachidonic acid did not change the profile of eicosanoid biosynthesis. Low doses of celecoxib inhibited formation of PGE2 in UMSCC-14A cells by 84% as early as 6 hours. In contrast, 5-HETE, 12-HETE, and 15-HETE levels were increased by approximately 40-, 5-, and 3-fold, respectively, with a decline to baseline levels within 24 hours. High dose celecoxib increased the 12-HETE level 2.3-fold after 3 days of incubation. Celecoxib inhibited growth of all HNSCC cell lines in a concentration-dependent manner regardless of their COX expression (IC50 values after 3 days; 33 to 62 µM). Our findings provide new informations about individual eicosanoids produced by HNSCC cells and their differential regulation by the selective COX-2 inhibitor celecoxib.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call