Abstract

Interactions between cannabinoids and eicosanoids have been observed for the last several decades and account for a variety of cannabinoid actions. These were seen both in vitro and in vivo and may provide a molecular basis for these actions. Some of the topics included in this review are; effects on adenylate cyclase activity, alteration of behavioral responses, reduction of pain sensation, reduction and resolution of inflammation, hypotensive and vasorelaxant responses, anti-cancer and anti-metastatic activities, reduction of intraocular pressure and others. The most widely studied cannabinoids so far are tetrahydrocannabinol and cannabidiol. However, synthetic agents such as CP55,940, ajulemic acid, JWH-133 and WIN-55,212-2 were also investigated for interaction with eicosanoids. The endocannabinoids anandamide and 2-arachidonoylglycerol have been examined as well. Among the eicosanoids mediating cannabinoid actions are PGE2, 15-deoxy-Δ12,14-prostaglandin-J2, lipoxin A4, lipoxin B4, and leukotriene B4. Enzyme activities involved include monoacylglycerylipase, adenylatecyclase, phospholipase A2, cyclooxygenases-1, 2 and 5, lipoxygenases-12 and 15. Receptors involved include CB1, CB2 and the EP3 and EP3 prostanoid receptors. While not all cannabinoid activities can be accounted for, many are best explained by eicosanoid participation. The recent surge in interest in "medical marijuana" makes understanding mechanisms of cannabinoid actions particularly important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.