Abstract
Wastewater stabilization ponds (WSPs) have been used in treating sewage treatment plants (STPs) effluents. However, little is known about the role of rhizospheric biofilms on methane release in WSPs with floating plants. In the present study, the nutrient removal, CH4 fluxes, CH4 oxidization potential and rhizospheric bacterial community were investigated in WSPs with Eichhornia crassipes under simulate STPs effluents for 31 days. At the end of the experiment, E. crassipes biomass was 5.60–8.81 times of initial weight and increased with increasing nutrients concentration. E. crassipes effectively reduced methane release and nutrients. Compared to control, E. crassipes reduced 52.30%–83.21% of CH4 fluxes at water-atmosphere interface and had better inhibition effect on CH4 fluxes in treatments with high nutrients. However, methane oxidization rates of E. crassipes roots were higher in low nutrients (0.83 ± 0.046 mg CH4 (kg fresh plant)−1 day−1) than high nutrients (0.12 ± 0.04 mg CH4 (kg fresh plant)−1 day−1). Structural equation modeling revealed that biomass of E. crassipes has negative effect on CH4 fluxes (−0.453, p = 0.000). Proteobacteria, Bacteroidetes, Planctomycetes, Chloroflexi and Actinobacteria were the predominant phyla in the rhizospheric biofilm of E. crassipes and contributed to nutrients removal. Aerobic methanotrophs and pomA abundances were higher in rhizospheric biofilm exposed to high nutrients than low nutrients and aerobic methanotrophs had close interactions with other microorganisms and participated in the carbon and nitrogen cycle, demonstrating that many bacteria harboring pmoA gene did not fully involve in methane oxidization. These data highlight plants E. crassipes have an important role in both reducing methane release and nutrients removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.