Abstract

Plants and animals have evolved a variety of strategies to limit the negative fitness consequences of natural enemies (i.e. herbivores, predators, parasites and pathogens). Demographic bottlenecks occurring during the invasion process reduce the number of co-introduced natural enemies, providing opportunities to study rapid evolution in environments with different or reduced enemy loads. Enemy release theory provides a set of hypotheses and predictions about the role of natural enemies in the proliferation of invasive species. This body of theory includes the Enemy Release Hypothesis (ERH) and the related Evolution of Increased Competitive Ability Hypothesis (EICA), but there is often confusion about these hypotheses and the data needed to test them. We introduce a simple, general model of enemy release to identify and clarify some of the key assumptions and predictions implicit in enemy release theory and its impacts on invasion. Although introduced populations likely benefit from a reduction in the direct fitness impacts of natural enemies in the early stages of invasion, an evolutionary shift in resource allocation from defence to growth and reproduction is much less likely and depends on a delicate balance between the fitness costs and benefits of defence and the fitness impacts of natural enemies in both the native and introduced ranges. Even when the abundance of natural enemies is lower in the introduced range, the majority of scenarios do not favour evolution of less defended genotypes that are more competitive or more fecund, contrary to predictions of EICA. Perhaps surprisingly, we find that the level of damage by natural enemies in field surveys is not generally a good parameter for testing enemy release theory. Instead, common garden experiments characterizing fitness reaction norms of multiple genotypes from the native and introduced range are crucial to estimate the historic rate of adaptive evolution or predict it into the future. Incorporating spatial autocorrelation and methods from population genetics can further improve our understanding of the role of enemy release and evolution in the proliferation of invasive species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.