Abstract
The word ‘double’ was used by Ehresmann to mean ‘an object X in the category of all X’. Double categories, double groupoids and double vector bundles are instances, but the notion of Lie algebroid cannot readily be doubled in the Ehresmann sense, since a Lie algebroid bracket cannot be defined diagrammatically. In this paper we use the duality of double vector bundles to define a notion of double Lie algebroid, and we show that this abstracts the infinitesimal structure (at second order) of a double Lie groupoid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.