Abstract
We discuss the precanonical quantization of fields which is based on the De Donder--Weyl (DW) Hamiltonian formulation and treats the space and time variables on an equal footing. Classical field equations in DW Hamiltonian form are derived as the equations for the expectation values of precanonical quantum operators. This field-theoretic generalization of the Ehrenfest theorem demonstrates the consistency of three aspects of precanonical field quantization: (i) the precanonical representation of operators in terms of the Clifford (Dirac) algebra valued partial differential operators, (ii) the Dirac-like precanonical generalization of the Schr\"odinger equation without the distinguished time dimension, and (iii) the definition of the scalar product for calculation of expectation values of operators using the Clifford-valued precanonical wave functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.