Abstract

When a liquid undergoes pool boiling, there is a critical heat flux level at which the departing vapor bubbles start to inhibit the flow of fresh liquid to the heated surface. A number of methods to enhance the critical heat flux of pool boiling have been considered, including electrohydrodynamic (EHD) enhancement. In these studies, the heater surface has generally been electrically grounded and a high-voltage electrode has been placed a short distance away from the heater surface to create a high intensity field near the heater. The resulting configuration produces a dielectrophoretic force on the vapor bubbles to promote vapor removal. However, the high voltage electrode can also act as a physical barrier to the incoming liquid and the departing vapor. The present study considers a different technique for EHD-enhancement of critical heat flux. EHD conduction-type electrodes are embedded into the heater surface and used to pump liquid along the heated surface. The embedding of this pumping technique into the heater thereby promotes wetting of the surface and subsequently delivers sizeable enhancements to the heat transfer. The effect of a variety of applied voltages on the boiling curve and the critical heat flux point are quantified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.