Abstract

Abfrontal ciliated cells of Mytilus edulis gill beat when mechanically stimulated, a consequence of a Ca++-based generator potential and regenerative response. In contrast, the lateral ciliated epithelial cells arrest when stimulated, a consequence of a Ca++-based generator potential and a Na+/Ca++-based regenerative response. Iontophoretic injection of EGTA in abfrontal cells, followed by mechanical stimulation, results in a large, prolonged depolarization that returns to the resting level stepwise. It has been hypothesized that this phenomenon is caused by successive Ca++-dependent repolarizations in coupled cells, first in adjacent cells and then in the injected cell, in accord with relative EGTA loading. We have now demonstrated this same stepwise repolarization phenomenon in the Na+/Ca++-dependent lateral ciliated cells. In this case, each repolarization step is often preceded by a small spike. With either cell type, using two-electrode recording techniques, we can detect the stepwise repolarization in distant cells, proportionately decremented when the second (KCl) electrode is some distance from the injection (EGTA) electrode and stimulus. When force is applied between the electrodes and nearest the KCl electrode, a greater initial response is recorded from this electrode, presumably resulting from depolarization of its impaled cell, prolonged by EGTA diffusion through the intervening cell junctions. The subsequent repolarization steps are of approximately the same size, suggesting repolarization of cells between the two electrodes. These observations are consistent with the cell coupling/EGTA loading hypothesis and indicate that both cell types mediate repolarization through Ca++ and propagate ciliary beat or arrest through intracellular coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.