Abstract

This study explored whether EGR1-MAP3K14-NF-κB axis regulated ferroptosis and IVD cartilage generation. EGR1 and MAP3K14 expression levels were determined in CEP tissues of IVDD patients and intermittent cyclic mechanical tension (ICMT)-treated CEP cells. After EGR1 and MAP3K14 were altered in ICMT-treated CEP cells, the expression levels of degeneration- and ferroptosis-related proteins were measured. Binding relationship between EGR1 and MAP3K14 was evaluated. Additionally, the impacts of EFR1 knockdown on ferroptosis and cartilage degeneration in vivo were analyzed. EGR1 and MAP3K14 were overexpressed in clinical samples and cell models of IVDD. In IVDD cell models, EGR1 knockdown reduced ferroptosis and cartilage degeneration, which was reversed by MAP3K14 overexpression or Erastin treatment. NF-κB pathway inhibition nullified these effects of sh-EGR1 + oe-MAP3K14 treatment. EGR1 knockdown inhibited ferroptosis and relieved CEP degeneration via MAP3K14-NF-κB axis inactivation in vivo. Collectively, our findings highlighted that EGR1 promoted ferroptosis and IVD cartilage degeneration through MAP3K14-NF-κB axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call