Abstract

Acute allograft rejection is one of the significant complications occurring in lung transplant recipients. Early growth response-1 (Egr-1), zinc-finger-type transcription factor, is known as a master switch regulator of diverse chemical mediators. We used an orthotopic mouse model of left lung transplant to elucidate the function of Egr-1 in acute pulmonary rejection. Left lung grafts retrieved from C57BL/6 wild mice or C57BL/6 Egr-1-null mice were orthotopically transplanted into BALB/c mice; the lungs were harvested at day 1, 3, 5 or 7 after lung transplantation. The grade of acute rejection was histopathologically evaluated. The intragraft gene expression levels of Egr-1 and downstream target mediators were quantitatively measured by real-time polymerase chain reaction. Immunohistochemical analysis was used to determine the location and distribution of the Egr-1 protein in the pulmonary graft. Severe acute rejection was observed in allografts from wild-type mice at 5 days after transplantation. Only minimal rejection was seen in the lung graft from Egr-1-null donor mice at 5 days after transplantation. Strong upregulation of Egr-1 mRNA transcripts was observed at day 1, which then decreased during the next 5 days. The mRNA of Egr-1 target mediators [interleukin-1-beta (IL-1β), monocyte chemotactic protein-1 (MCP-1) and plasminogen activator inhibitor-1] reached maximal levels at day 5. Egr-1-null allografts exhibited significantly lower expressions of IL-1β and MCP-1 mRNA (P < 0.05). Our study showed that deletion of Egr-1 in lung allografts ameliorates severe acute rejection with the reduction of expression levels of chemical mediators, implying a new possible strategy for treating acute pulmonary allograft rejection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call