Abstract
While exogenous variables have a major impact on performance improvement in time series analysis, interseries correlation and time dependence among them are rarely considered in the present continuous methods. The dynamical systems of multivariate time series could be modeled with complex unknown partial differential equations (PDEs) which play a prominent role in many disciplines of science and engineering. In this article, we propose a continuous-time model for arbitrary-step prediction to learn an unknown PDE system in multivariate time series whose governing equations are parameterized by self-attention and gated recurrent neural networks. The proposed model, exogenous-guided PDE network (EgPDE-Net), takes account of the relationships among the exogenous variables and their effects on the target series. Importantly, the model can be reduced into a regularized ordinary differential equation (ODE) problem with specially designed regularization guidance, which makes the PDE problem tractable to obtain numerical solutions and feasible to predict multiple future values of the target series at arbitrary time points. Extensive experiments demonstrate that our proposed model could achieve competitive accuracy over strong baselines: on average, it outperforms the best baseline by reducing 9.85% on RMSE and 13.98% on MAE for arbitrary-step prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.