Abstract
Change detection from heterogeneous satellite and aerial images plays a progressively important role in many fields, including disaster assessment, urban construction, and land use monitoring. Currently, researchers have mainly devoted their attention to change detection using homologous image pairs and achieved many remarkable results. It is sometimes necessary to use heterogeneous images for change detection in practical scenarios due to missing images, emergency situations, and cloud and fog occlusion. However, heterogeneous change detection still faces great challenges, especially using satellite and aerial images. The main challenges in satellite and aerial image change detection are related to the resolution gap and blurred edge. Previous studies used interpolation or shallow feature alignment before traditional homologous change detection methods, which ignored the high-level feature interaction and edge information. Therefore, we propose a new heterogeneous change detection model based on multimodal transformers combined with edge guidance. In order to alleviate the resolution gap between satellite and aerial images, we design an improved spatially aligned transformer (SP-T) with a sub-pixel module to align the satellite features to the same size of the aerial ones supervised by a token loss. Moreover, we introduce an edge detection branch to guide change features using the object edge with an auxiliary edge-change loss. Finally, we conduct considerable experiments to verify the effectiveness and superiority of our proposed model (EGMT-CD) on a new satellite–aerial heterogeneous change dataset, named SACD. The experiments show that our method (EGMT-CD) outperforms many previously superior change detection methods and fully demonstrates its potential in heterogeneous change detection from satellite–aerial images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.