Abstract

Ansocalcin is a novel goose eggshell matrix protein with 132 amino acid residues, which induces the formation of polycrystalline calcite aggregates in in vitro crystallization experiments. The central region of ansocalcin is characterized by the presence of multiplets of charged amino acids. To investigate the specific role of charged amino acid multiplets in the crystal nucleation, three short peptides REWD-16, REWDP-17 (containing charged doublets), and RADA-16 (alternating charged residues) were synthesized and characterized. The aggregation of these peptides in solution was investigated using circular dichroism, intrinsic tryptophan fluorescence, and dynamic light scattering experiments. The peptides REWD-16 and REWDP-17 induced the polycrystalline calcite crystal aggregates, whereas RADA-16 did not induce significant changes in calcite crystal morphology or aggregate formation in in vitro crystallization experiments. The lattice and morphology of the calcite crystals were characterized using X-ray diffraction and scanning electron microscope. The results discussed in this paper reveal the importance of multiplets of charged amino acid residues toward the nucleation of polycrystalline calcite crystal aggregates in solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call