Abstract

AbstractBiphasic calcium phosphate (BCP) has received much interest for making various bone substitutes since its physicochemical properties can be easily tailored by tuning its phase composition. Due to high temperature processing, it is hard to prepare BCP with nanoscale characteristics. In the present study, we have made an attempt to optimize the heat treatment parameters for the synthesis of BCP with nanoscale characteristics from eggshell derived hydroxyapatite (HA) through rapid thermal processing (RTP). To accomplish this, eggshell derived HA was prepared by wet precipitation method and subjected to RTP at 750°C and 1150°C for 3 and 10 minutes. For comparison we have also studied conventional calcination at 750°C and 1150°C for 3 hours. XRD, FTIR, SEM, EDX, HRTEM, and BET analyses were used to understand the effect of RTP and conventional calcination on eggshell derived HA. Our results indicate that eggshell derived HA on RTP at 1150°C for 3 minutes and 10 minutes can offer nanoscale BCP with good dissolution, bioactivity, cytocompatibility, and mesoporous nature. Hence, RTP can be a potential method to prepare BCP with nanoscale features for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call