Abstract

AbstractSparse matrix computations are among the most important computational patterns, commonly used in geometry processing, physical simulation, graph algorithms, and other situations where sparse data arises. In many cases, the structure of a sparse matrix is known a priori, but the values may change or depend on inputs to the algorithm. We propose a new methodology for compile‐time specialization of algorithms relying on mixing sparse and dense linear algebra operations, using an extension to the widely‐used open source Eigen package. In contrast to library approaches optimizing individual building blocks of a computation (such as sparse matrix product), we generate reusable sparsity‐specific implementations for a given algorithm, utilizing vector intrinsics and reducing unnecessary scanning through matrix structures. We demonstrate the effectiveness of our technique on a benchmark of artificial expressions to quantitatively evaluate the benefit of our approach over the state‐of‐the‐art library Intel MKL. To further demonstrate the practical applicability of our technique we show that our technique can improve performance, with minimal code changes, for mesh smoothing, mesh parametrization, volumetric deformation, optical flow, and computation of the Laplace operator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call