Abstract

Elemental signatures have been used as a tool to track individual organisms to their natal site in an attempt to understand stock structure and larval dispersal. However, factors that affect elemental signatures are not well understood. We conducted a factorial experiment using whelk Kel- letia kelletii larvae from Salta Verde Point on Catalina Island, Los Angeles Harbor, and White Point, Palos Verdes peninsula, California, USA, to test the effects of egg source, temperature (10, 14 and 18°C) and culture seawater on the elemental composition of larval statoliths. Intra-capsular contents of newly laid capsules were also analyzed to explore whether maternal contributions might affect lar- val statolith chemistry. Using inductively coupled plasma mass spectrometry we quantified ratios of 7 elements to calcium in both intra-capsular contents and cultured statoliths and provided the first evidence of significant egg-source effects, independent of subsequently experienced environmental conditions, on statolith elemental signatures for Mg:Ca, Ba:Ca and Pb:Ca. Intra-capsular and statolith element ratios showed no clear relationship that might have indicated possible maternal transfer of elements to larvae. Culture seawater elemental concentration was positively related to statolith Ba:Ca and Pb:Ca, and temperature was negatively related to statolith Sr:Ca, Ba:Ca and Pb:Ca, while no significant effects were found for Mn:Ca or Zn:Ca. Effect-size estimates show that elements responded differently to factors within the variation measured in this study; the major effects for Ba and Pb were temperature and egg source, respectively. The significant effect of egg source on elemental signatures has potentially important implications for tracking free-spawned larvae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.