Abstract

Tick eggs contain all essential proteins for embryogenesis, and egg proteins are a potential reservoir of tick-protective antigens. However, the protein profile and dynamics during embryonic development remain unknown. This study aimed to depict the protein profile and dynamics in tick embryogenesis, further providing protein candidates for targeted interventions. Eggs from Haemaphysalis flava ticks were incubated at 28 °C and 85% relative humidity. On days 0 (newly laid eggs without incubation), 7, 14 and 21, eggs were collected, dewaxed and subject to protein extraction. Extracted proteins were digested by filter-aided sample preparation and analyzed by liquid chromatography-tandem mass spectrometry (LC/MS-MS). MS data were searched against an in-house H. flava protein database for tick-derived protein identification. Abundances of 40 selected high-confidence proteins were further quantified by LC-parallel reaction monitoring (PRM)/MS analysis throughout egg incubation. A total of 93 high-confidence proteins were identified in eggs on 0-day incubation. Identified proteins belonged to seven functional categories: transporters, enzymes, proteinase inhibitors, immunity-related proteins, cytoskeletal proteins, heat shock proteins and uncharacterized proteins. The enzyme category contained the most types of proteins. Neutrophil elastase inhibitors represented the most abundant proteins in terms of intensity-based absolute-protein-quantification. LC-PRM/MS revealed that the abundances of 20 proteins increased including enolase, calreticulin, actin, GAPDH et cetera, and the abundances of 11 proteins decreased including vitellogenins, neutrophil elastase inhibitor, carboxypeptidase Q, et cetera from 0- to 21-day incubation. This study provides the most comprehensive egg protein profile and dynamics during tick embryogenesis. Further investigations are needed to test the tick-control efficacy by targeting the egg proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.