Abstract
Egg-jelly is composed of a network of fibrous components and contains substances regulating the sperm-egg interaction. Many studies on the latter have been conducted, whereas the role of the egg-jelly structure in fertilization has not yet been fully assessed. In this study, we examined the fertilization efficiency in the presence and absence of the structure around the egg of the newt, Cynops pyrrhogaster, using a gelatin gel system. Although de-jellied eggs of C. pyrrhogaster can be fertilized with an adequate number of sperm, the fertilization rate was dramatically increased through the use of the gelatin gel. Sperm showed forward motility with straight morphology in the gel, whereas they swam in circles in solution. This result indicates that the gel structure is significant for sperm guidance to the egg surface, and its presence raises the fertilization efficiency in C. pyrrhogaster. When sperm were entangled in the gel structure, they were immediately folded and never showed any forward motility. Sperm with zigzag morphology were observed in the gelatin gel as well as in the egg-jelly, indicating the elimination of sperm by the gel structure. The effect of sperm elimination on successful fertilization was estimated using gelatin gels of different thickness. Though the variation did not affect the fertilization rate, the rate of normal development gradually increased in the thicker gels. This result indicates that sperm elimination in egg-jelly can function in the fertilization system. The roles of sperm guidance and sperm elimination under the physiological condition of internal fertilization of the newt are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.