Abstract
The purpose of this research was to investigate the effectiveness of epidermal growth factor receptor (EGFR) targeted micelles loaded with IR-780 (Cetuximab/IR-780/micelles) for generating tumor targeting, multimodal images, and photothermal therapy (PTT). We initially studied the cellular uptake of these micelles using the HCT-116 and SW-620 cell lines. HCT-116 (high expression of EGFR) and SW-620 (low expression of EGFR) cell lines were used to examine biodistribution and antitumor effects of Cetuximab/IR-780/micelles. Time-lapse near-IR fluorescence (NIRF) images also indicated the highest IR-780 accumulation from Cetuximab/IR-780/micelles in HCT-116 tumors (p<0.05). HCT-116 tumors in tumor-bearing mice exhibited significantly higher accumulations of Cetuximab/IR-780/111In-micelles than SW-620 tumors in Micro-SPECT/CT imaging and biodistribution studies (p<0.05). Dual-radioisotope Nano-SPECT/CT imaging of Cetuximab/131I-IR-780/111In-micelles demonstrated simultaneous high accumulation of both IR-780 and micelles in HCT-116 tumors, but not in SW-620 tumors. Regarding antitumor effects, following the Cetuximab/IR-780/micelles with PPT on day 6, all HCT-116 tumor-bearing mice were cured. In contrast, SW-620 tumors relapsed at 13days after treatment. In summary, we expect that the Cetuximab/IR-780/micelles could enhance the antitumor effects by PTT in EGFR overexpression colorectal cancers through effective drug delivery nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.