Abstract

In view of their critical function in metastasis, characterization of single circulating tumor cells (CTCs) can provide important clinical information to monitor tumor progression and guide personal therapy. Single-cell genetic analysis methods based on microfluidics have some inherent shortcomings such as complicated operation, low throughput, and expensive equipment requirements. To overcome these barriers, we developed a simple and open micro-well array containing 26,208 units for either nuclear acids or single-cell genetic analysis. Through modification of the polydimethylsiloxane surface and optimization of chip packaging, we addressed protein adsorption and solution evaporation for PCR amplification on a chip. In the detection of epidermal growth factor receptor (EGFR) exon gene 21, this micro-well array demonstrated good linear correlation at a DNA concentration from 1 × 101 to 1 × 105 copies/μL (R2 = 0.9877). We then successfully integrated cell capture, lysis, PCR amplification, and signal read-out on the micro-well array, enabling the rapid and simple genetic analysis of single cells. This device was used to detect duplex EGFR mutation genes of lung cancer cell lines (H1975 and A549 cells) and normal leukocytes, demonstrating the ability to perform high-throughput, massively parallel duplex gene analysis at the single-cell level. Different types of point mutations (EGFR-L858R mutation or EGFR-T790M mutation) were detected in single H1975 cells, further validating the significance of single-cell level gene detection. In addition, this method showed a good performance in the heterogeneity detection of individual CTCs from lung cancer patients, required for micro-invasive cancer monitoring and treatment selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.