Abstract
BackgroundNon-small cell lung cancer (NSCLC) patients with EGFR mutations exhibit an unfavorable response to immune checkpoint inhibitor (ICI) monotherapy, and their tumor microenvironment (TME) is usually immunosuppressed. TGF-β plays an important role in immunosuppression; however, the effects of TGF-β on the TME and the efficacy of anti-PD-1 immunotherapy against EGFR-mutated tumors remain unclear.MethodsCorresponding in vitro studies used the TCGA database, clinical specimens, and self-constructed mouse cell lines with EGFR mutations. We utilized C57BL/6N and humanized M-NSG mouse models bearing EGFR-mutated NSCLC to investigate the effects of TGF-β on the TME and the combined efficacy of TGF-β blockade and anti-PD-1 therapy. The changes in immune cells were monitored by flow cytometry. The correlation between TGF-β and immunotherapy outcomes of EGFR-mutated NSCLC was verified by clinical samples.ResultsWe identified that TGF-β was upregulated in EGFR-mutated NSCLC by EGFR activation and subsequent ERK1/2-p90RSK phosphorylation. TGF-β directly inhibited CD8+ T cell infiltration, proliferation, and cytotoxicity both in vitro and in vivo, but blocking TGF-β did not suppress the growth of EGFR-mutated tumors in vivo. Anti-TGF-β antibody combined with anti-PD-1 antibody significantly inhibited the proliferation of recombinant EGFR-mutated tumors in C57BL/6N mice, which was superior to their monotherapy. Mechanistically, the combination of anti-TGF-β and anti-PD-1 antibodies significantly increased the infiltration of CD8+ T cells and enhanced the anti-tumor function of CD8+ T cells. Moreover, we found that the expression of TGF-β1 in EGFR-TKI resistant cell lines was significantly higher than that in parental cell lines. The combination of anti-TGF-β and nivolumab significantly inhibited the proliferation of EGFR-TKI resistant tumors in humanized M-NSG mice and prolonged their survival.ConclusionsOur results reveal that TGF-β expression is upregulated in NSCLC with EGFR mutations through the EGFR-ERK1/2-p90RSK signaling pathway. High TGF-β expression inhibits the infiltration and anti-tumor function of CD8+ T cells, contributing to the “cold” TME of EGFR-mutated tumors. Blocking TGF-β can reshape the TME and enhance the therapeutic efficacy of anti-PD-1 in EGFR-mutated tumors, which provides a potential combination immunotherapy strategy for advanced NSCLC patients with EGFR mutations.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.