Abstract

Breast cancers that express epidermal growth factor (EGF) receptors (EGFRs) are associated with poor prognosis. Our group recently showed in breast cancer patients that EGFR expression is strongly correlated with high tumor uptake of the glucose analogue, 18F-fluorodeoxyglucose (FDG). Here, we explored the cellular mechanism and signaling pathways that can explain the relation between EGFR and breast cancer cell glucose metabolism. FDG uptake, lactate production and hexokinase (HK) activity were measured, and proliferation assays and western blots were performed. EGF stimulated an increase of FDG uptake in EGFR-positive T47D and MDA-MB-468 cells, but not in MCF-7 cells. In T47D cells, the effect was dose-dependent and was accompanied by increased lactate production, indicating a shift toward glycolytic flux. This metabolic response occurred through enhanced HK activity and upregulated glucose transporter 1 (GLUT1) expression. EGFR stimulation also increased T47D cell proliferation. Blocking EGFR activation with BIBX1382 or gefitinib completely abolished both FDG uptake and proliferation effects. EGFR stimulation induced MAP kinase (MAPK) and PI3 kinase (PI3K) activation. Increased cell proliferation by EGFR stimulation was completely abolished by MAPK inhibition with PD98059 or by PI3K inhibition with LY294002. Increased FDG uptake was also completely abrogated by PI3K inhibition but was uninfluenced by MAPK inhibition. These findings suggest that the association between breast tumor EGFR expression and high FDG uptake might be contributed by stimulation of the PI3K pathway downstream of EGFR activation. This was in contrast to EGFR-mediated cell proliferation that required MAPK as well as PI3K signaling.

Highlights

  • Breast cancer is a major cause of cancer-related death in women [1]

  • Time course experiments showed that stimulation of the FDG uptake effect by epidermal growth factor (EGF) began at 4 h (117.4 ± 13.6% of controls, P

  • Dose-dependent experiments showed that EGF treatment, which began with a concentration of 0.1 μg/mL, increased FDG uptake within 24 h

Read more

Summary

Introduction

Breast cancer is a major cause of cancer-related death in women [1]. In these tumors, the status of estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptor 2 (HER2) are well-recognized predictors of treatment response and prognosis [2, 3]. Another receptor frequently overexpressed in triple-negative breast cancers (TNBCs), a subgroup associated with poor treatment response and outcomes, is the epidermal growth factor receptor (EGFR) [4,5,6]. Our group recently discovered that breast tumor FDG uptake is more strongly influenced by EGFR status than by other major biomarkers [14]. FDG PET may allow monitoring of tumor response to therapies targeting the EGFR pathway [15,16,17]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.