Abstract

Although much progress has been made in the design of retrovirus vectors, the interactions of recombinant retrovirus with host cells remain largely elusive. The inability of recombinant retrovirus to transduce non-dividing cells prompted several studies to determine optimal cocktails of growth factors and/or extracellular matrix molecules to promote gene transfer to slowly diving cells and stem cells. In contrast to previous reports that growth factors increased gene transfer, we found that treatment of human epidermal keratinocytes and several cell lines with epidermal growth factor receptor (EGFR) ligands EGF, transforming growth factor-α, or heparin-binding-EGF decreased gene transfer. Conversely, treatment with an EGFR function-blocking antibody or inhibition of EGFR tyrosine phosphorylation enhanced gene transfer in a dose-dependent manner. In addition, blocking protein kinase C (PKC)-δ but not PKC-ζ, with chemical inhibitors or small interfering RNA reversed the effects of EGF and restored gene transfer, indicating that the effect of EGFR activation is mediated through PKC-δ. Lastly, cell cycle analysis showed that the effect of EGFR activation on retroviral gene transfer was independent of the cell cycle status of target cells. Our results implicate EGFR and PKC-δ in retroviral infection and may have implications for retrovirus gene transfer or design of antiretroviral therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.