Abstract

A burgeoning interest has recently focused on the development of nanomedicine to integrate noninvasive photothermal therapy (PTT) and chemodynamic therapy (CDT) for synergistic tumor treatments, owing to PTT's amplification effect on CDT. However, challenges emerge as hyperthermia often induces an unwarranted overexpression of cytoprotective heat shock proteins (HSPs), thereby curtailing PTT efficacy. Additionally, the nearly neutral tumor intracellular pH (pHi ≈ 7.2) that handicaps the Fenton reaction poses a leading limitation to CDT. Addressing these hurdles, we introduce EVP, a nanomedicine developed through the straightforward assembly of epigallocatechin gallate (EGCG), vanadium sulfate (VOSO4), and Pluronic F-127 (PF127). EVP comprehensively downregulates overexpressed HSPs (HSP 60, 70, 90) through the collaborative action of EGCG and vanadyl (VO2+). Moreover, the tumor intracellular pH-processed Fenton-like reaction by VO2+ ensures highly efficient hydroxyl radicals (OH) production in cytosols, overcoming the stringent acidity requirement for CDT. Additionally, the hyperthermia induced by PTT augments OH production, further enhancing CDT efficacy. In vitro and in vivo experiments validate EVP's excellent biocompatibility and potent tumor inhibition, highlighting its substantial potential in tumor therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.