Abstract

To assess whether EGb761 could protect elderly diabetic mice with cognitive disorders and explore the role of beclin-1-mediated autophagy in these protective effects. Two-month-old male db/db−/− mice and wild-type C57/BL6 mice were randomly divided into six groups: db/db−/− control, db/db−/− 50 mg, db/db−/− 100 mg, wild-type (WT) control, WT 50 mg, and WT 100 mg. EGb761 (50 mg/kg or 100 mg/kg of bodyweight) was given by gavage once a day for 1 month from the age of 6 months. Y-maze and social choice tests were performed at 8th months. The blood pressure was measured. The imaging changes in the brain were measured using magnetic resonance imaging (MRI). The expression and distribution of beclin-1, LC3, and NF-κB were detected using immunohistochemistry staining and western blotting. Ultrastructure alterations in the hippocampus were observed using transmission electron microscopy. Compared with WT mice, the learning ability, memory and overall cognitive function of db/db−/− mice decreased (P < 0.05), and EGb761 could significantly improve the learning and memory function of db/db−/− mice (P < 0.05). EGb761 significantly improved systolic blood pressure in db/db−/− mice (P < 0.01). In addition, fMRI-bold showed a decline in the hippocampus of mice in the db/db−/− group compared with WT. EGb761 could improve these above changes. Immunohistochemistry staining and western blotting confirmed that EGb761 significantly increased beclin-1 and reduced LC3-II/I levels in the brains of db/db−/− mice (P < 0.05). NF-κB levels were obviously higher in the db/db−/− group than that in the WT group, and EGb761 significantly reduced NF-κB levels in db/db−/− mice (P < 0.05). There was a trend of increased autophagosomes in db/db−/− mice, but EGb761 did not change obviously the number of autophagosomes. Compared with normal aged WT mice, aging db/db−/− mice had more common complications of cerebral small vessel disease and cognitive dysfunction. EGb761 could significantly improve the cognitive function of aging db/db−/− mice via a mechanism that may involve the regulation of beclin-1, LC3, and NF-κB.

Highlights

  • Type 2 diabetes mellitus (T2DM) and cerebral small vessel disease (CSVD) are two of the most common diseases in the elderly population

  • The results demonstrated that EGb761 could significantly improve the cognitive function of elderly T2DM mice via a mechanism which may be related to the modulation on beclin-1 and NF-κB signaling

  • CSVD and cognitive dysfunction were more common in db/db−/− mice than in WT, and low-dose EGb761 could help promote the ability of learning and memory in db/ db−/− mice

Read more

Summary

Introduction

Type 2 diabetes mellitus (T2DM) and cerebral small vessel disease (CSVD) are two of the most common diseases in the elderly population. According to the statistical results published by the International Diabetes Federation, the number of T2DM patients in China reached 96 million in 2014, and the morbidity was the highest in the world, higher than India and the United States (Whiting et al 2011). T2DM is an independent risk factor for cerebrovascular disease (Zhou et al 2009). Since CSVD induces collateral circulation dysfunction in the brain, cognitive disorders are one of the common complications in patients with T2DM (Chan et al 2013; Imamine et al 2011). There is a lack of clinical therapies which are effective against the T2DM cognitive disorders

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call