Abstract

The principal factors that limit intensities of short-lived radioactive ion beams produced by the isotope separator on-line technique are time delays due to diffusion of radioactive species from solid or liquid target materials and their effusive-flow transport to the ion source. Although diffusion times can be reduced by proper design of short diffusion length, highly refractory targets, effusive-flow times are more difficult to assess. After diffusion from the target material, the species must travel through the target material and vapor transport system to the ion source. The time required for effusive-flow transport to the ion source depends on the conduction path, chemical reactions between the species and target material and materials of construction, as well as the physical size and geometry of the transport system. We have developed a fast valve (0.1 ms closing time) for introducing gaseous or vapor-state species into the target/vapor transport/ion source/system that permits measurement of effusive-flow times for any gaseous or vaporous species (chemically active or chemically inactive) through any vapor transport system, independent of size and geometry. Characteristic times are determined from the exponential decay of the momentum analyzed ion beam intensity for the species during effusive flow through the vapor transport system under evaluation. This article describes the effusive-flow apparatus and presents characteristic time spectra and characteristic effusive-flow time data for noble gases flowing through a serial-flow target reservoir system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.