Abstract

Klebsiella pneumoniae is a common cause of urinary tract infections (UTIs). Nitrofurantoin (NIT), with high therapeutic concentrations in urine, is recommended as the first-line drug for both empiric treatment and chemoprophylaxis of UTIs. Although NIT resistance in K. pneumoniae is relatively high, the resistance mechanism is not well understood. This study collected a NIT-resistant K. pneumoniae [NRKP, minimum inhibitory concentration (MIC)=128 mg/L] and investigated the resistance mechanism. Addition of efflux pump inhibitors increased the susceptibility of NRKP to NIT (MIC decreased from 128 to 32 mg/L), implying the important role of efflux pumps in NIT resistance. Quantitative reverse transcriptase polymerase chain reaction analysis showed that NRKP had >100-fold increased expression of ramA, which was demonstrated to be caused by ramR mutation. Deletion of ramA led to a four-fold decrease in the MIC of NIT, and the expression levels of efflux pumps acrB and oqxB were downregulated by four- to seven-fold. Complementation of ramA restored both the MIC value and the expression level of acrB and oqxB in the ramA mutant strain. In order to confirm the role of acrB and oqxB in NIT resistance, gene knockout strains were constructed. Deletion of acrB or oqxB alone led to a four-fold decrease in the MIC of NIT, and deletion of acrB and oqxB simultaneously led to a 16-fold decrease in the MIC of NIT. These results demonstrate that AcrAB and OqxAB contribute to NIT resistance in K. pneumoniae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call