Abstract

BackgroundBurkholderia cenocepacia is recognized as opportunistic pathogen that can cause lung infections in cystic fibrosis patients. A hallmark of B. cenocepacia infections is the inability to eradicate the organism because of multiple intrinsic antibiotic resistance. As Resistance-Nodulation-Division (RND) efflux systems are responsible for much of the intrinsic multidrug resistance in Gram-negative bacteria, this study aims to identify RND genes in the B. cenocepacia genome and start to investigate their involvement into antimicrobial resistance.ResultsGenome analysis and homology searches revealed 14 open reading frames encoding putative drug efflux pumps belonging to RND family in B. cenocepacia J2315 strain.By reverse transcription (RT)-PCR analysis, it was found that orf3, orf9, orf11, and orf13 were expressed at detectable levels, while orf10 appeared to be weakly expressed in B. cenocepacia. Futhermore, orf3 was strongly induced by chloramphenicol. The orf2 conferred resistance to fluoroquinolones, tetraphenylphosphonium, streptomycin, and ethidium bromide when cloned and expressed in Escherichia coli KAM3, a strain lacking the multidrug efflux pump AcrAB. The orf2-overexpressing E. coli also accumulate low concentrations of ethidium bromide, which was restored to wild type level in the presence of CCCP, an energy uncoupler altering the energy of the drug efflux pump.ConclusionThe 14 RND pumps gene we have identified in the genome of B. cenocepacia suggest that active efflux could be a major mechanism underlying antimicrobial resistance in this microorganism. We have characterized the ORF2 pump, one of these 14 potential RND efflux systems. Its overexpression in E. coli conferred resistance to several antibiotics and to ethidium bromide but it remains to be determined if this pump play a significant role in the antimicrobial intrinsic resistance of B. cenocepacia. The characterization of antibiotic efflux pumps in B. cenocepacia is an obligatory step prior to the design of specific, potent bacterial inhibitors for the improved control of infectious diseases. Consequently, the topic deserves to be further investigated and future studies will involve systematic investigation on the function and expression of each of the RND efflux pump homologs.

Highlights

  • Burkholderia cenocepacia is recognized as opportunistic pathogen that can cause lung infections in cystic fibrosis patients

  • By reverse transcription (RT)-PCR analysis, it was found that orf3, orf9, orf11, and orf13 were expressed at detectable levels, while orf10 appeared to be weakly expressed in B. cenocepacia

  • The orf2overexpressing E. coli accumulate low concentrations of ethidium bromide, which was restored to wild type level in the presence of carbonyl cyanide m-chlophenylhydrazone (CCCP), an energy uncoupler altering the energy of the drug efflux pump

Read more

Summary

Introduction

Burkholderia cenocepacia is recognized as opportunistic pathogen that can cause lung infections in cystic fibrosis patients. A hallmark of B. cenocepacia infections is the inability to eradicate the organism because of multiple intrinsic antibiotic resistance. As ResistanceNodulation-Division (RND) efflux systems are responsible for much of the intrinsic multidrug resistance in Gram-negative bacteria, this study aims to identify RND genes in the B. cenocepacia genome and start to investigate their involvement into antimicrobial resistance. Intrinsic resistance is intimately associated to the biology of the organism and usually involves the ability to resist a large number of different classes of antibiotics, while acquired resistance occurs when a bacterium that is sensitive to antibiotics develops resistance by mutation or by acquisition of new DNA. Bacterial intrinsic drug resistance was thought to be a passive mechanism, based on the absence of the drug target or on the lack of permeability of the bacteria to a given drug. Disruption of the gene encoding the MexB pump dramatically increases the susceptibility of P. aeruginosa to beta-lactams, tetracyclines, fluoroquinolones, and chloramphenicol [3], indicating that the resistance was mediated by efflux

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call