Abstract

Evidence has accumulated suggesting that ischemia-induced neuronal damage may be linked to an extracellular overflow of glutamate. The purpose of this study was to provide new information about the time course of the increase in extracellular glutamate concentration associated with moderate and severe ischemia, and its relationship with electrical changes including anoxic depolarization. Changes in the extracellular concentration of glutamate were continuously monitored in the rat striatum by microdialysis. Ischemia was induced by four-vessel occlusion for 3 or 5 minutes, and in some cases its severity was increased with a neck tourniquet. The severity of ischemia was assessed by electroencephalogram and direct current potential recording to detect anoxic depolarization. In all experiments, the extracellular glutamate concentration began to increase shortly after the onset of ischemia and steadily rose throughout the ischemic period. Increases up to 35.0 mumol/l (2-3 mumol/l baseline; p less than 0.005) were observed when ischemia provoked the rapid occurrence of a large and sustained anoxic depolarization. Relatively smaller but still significant increases (6.9 mumol/l; p less than 0.005) were observed in penumbral conditions (electroencephalogram loss without anoxic depolarization). Glutamate began to be cleared immediately after reperfusion and 90% of released glutamate was cleared within 5 minutes, even when the preceding ischemia had been severe. We propose that the extracellular glutamate concentration may not reach critical levels during short episodes of penumbral ischemia, but this might happen with a longer ischemic period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.