Abstract
Liquid Natural Gas (LNG) processing facilities typically are located on ocean shores for easy transport of LNG by marine vessels. These plants use large quantities of water for various process streams. The combined wastewater effluents from the LNG plants are discharged to the coastal and marine environments typically through submarine outfalls. Proper disposal of effluents from an LNG plant is essential to retain local and regional environmental values and to ensure regulatory and permit compliance for industrial effluents. Typical outfall designs involve multi-port diffuser systems where the design forms a part of the overall environmental impact assessment for the plant. The design approach needs to ensure that both near-field plume dispersion and far-field effluent circulation meets the specified mixing zone criteria. This paper describes typical wastewater process streams from an LNG plant and presents a diffuser system design case study (for an undisclosed project location) in a meso-tidal coast to meet the effluent mixing zone criteria. The outfall is located in a coastal and marine ecosystem where the large tidal range and persistent surface wind govern conditions for the diffuser design. Physical environmental attributes and permit compliance criteria are discussed in a generic format. The paper describes the design approach, conceptualization of numerical model schemes for near- and far-field effluent mixing zones, and the selected diffuser design.
Highlights
Total global demand for liquefied natural gas (LNG), which is one of the cleanest fossil fuels, is estimated to have grown by approximately seven percent per year since 2000 [1,2]
In a typical LNG process the natural gas is first extracted from a deep on- or offshore gas exploration site, pre-treated and transported to an onshore or near shore processing plant where it is purified by removing condensates such as water, oil, mud, and other gases
This paper describes typical wastewater process streams from an LNG plant and presents a diffuser system design case study in a meso-tidal coast to meet the effluent mixing zone criteria
Summary
Total global demand for liquefied natural gas (LNG), which is one of the cleanest fossil fuels, is estimated to have grown by approximately seven percent per year since 2000 [1,2]. The number of new construction and operation of LNG plants heightened environmental awareness in the plant permitting process. In a typical LNG process the natural gas is first extracted from a deep on- or offshore gas exploration site, pre-treated and transported to an onshore or near shore processing plant where it is purified by removing condensates such as water, oil, mud, and other gases. An LNG process train would typically be designed to remove trace amounts of mercury from the gas stream. Papers and Supporting Data on the International Equation of State of Seawater 1980; Technical Papers in Marine Science; UNESCO: Paris, France, 1981; p. 192.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.