Abstract
As tomatoes are the most consumed vegetable in the world, production should be increased to fulfill the vast demand for this vegetable. Global warming, climate changes, and other significant factors, including pests, badly affect tomato plants and cause various diseases that ultimately affect the production of this vegetable. Several strategies and techniques have been adopted for detecting and averting such diseases to ensure the survival of tomato plants. Recently, the application of artificial intelligence (AI) has significantly contributed to agronomy in the detection of tomato plant diseases through leaf images. Deep learning (DL)-based techniques have been largely utilized for detecting tomato leaf diseases. This paper proposes a hybrid DL-based approach for detecting tomato plant diseases through leaf images. To accomplish the task, this study presents the fusion of two pretrained models, namely, EfficientNetB3 and MobileNet (referred to as the EffiMob-Net model) to detect tomato leaf diseases accurately. In addition, model overfitting was handled using various techniques, such as regularization, dropout, and batch normalization (BN). Hyperparameter tuning was performed to choose the optimal parameters for building the best-fitting model. The proposed hybrid EffiMob-Net model was tested on a plant village dataset containing tomato leaf disease and healthy images. This hybrid model was evaluated based on the best classifier with respect to accuracy metrics selected for detecting the diseases. The success rate of the proposed hybrid model for accurately detecting tomato leaf diseases reached 99.92%, demonstrating the model’s ability to extract features accurately. This finding shows the reliability of the proposed hybrid model as an automatic detector for tomato plant diseases that can significantly contribute to providing better solutions for detecting other crop diseases in the field of agriculture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.