Abstract

The world was introduced to the term coronavirus at the end of 2019, following which everyone was thrown into stress and anxiety. The pandemic has been a complete disaster, wreaking devastation and resulting in a significant loss of human life throughout the world. The governments of various countries have issued guidelines and protocols to be followed for stopping the surge in cases (i.e., wearing masks). Amidst all this chaos, the only weapon is technology. So, the detection of face masks is important. The authors utilized a dataset that included images of individuals in society wearing and not wearing masks. They gathered the information required to train a model by using deep networks like EfficientNetB0, MobileNetV2, ResNet50, and InceptionV3. With EfficientNet-B0, they have been able to achieve an accuracy of 99.70% on a two-class classification issue. These methods make face mask detection easier and help in knowledge discovery. These technological breakthroughs may aid in information retrieval as well as help society and guarantee that such a healthcare disaster does not occur again.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.