Abstract

We present a proactive resource allocation algorithm, called BEA, for fault-tolerant asynchronous real-time distributed systems. BEA considers an application model where transnode application timeliness requirements are expressed using benefit functions, and anticipated workload during future time intervals are expressed using adaptation functions. Furthermore, BEA considers an adaptation model where subtasks of application tasks are replicated at run-time for tolerating failures as well as for sharing workload increases. Given such models, the objective of the algorithm is to maximize the aggregate real-time benefit and the ability to tolerate host failures during the time window of adaptation functions. Since determining the optimal solution is computationally intractable, BEA heuristically computes near-optimal resource allocations in polynomial-time. We show that BEA can achieve almost the same fault-tolerance ability as full replication, and accrue most of real-time benefit that full replication can accrue. In the meanwhile, BEA requires much fewer replicas than full replication, and hence is cost effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.