Abstract

Data mining consists of deriving implicit, potentially meaningful and useful knowledge from databases such as information about the most profitable items. High-utility itemset mining (HUIM) has thus emerged as an important research topic in data mining. But most HUIM algorithms can only handle precise data, although big data collected in real-life applications using experimental measurements or noisy sensors is often uncertain. In this paper, an efficient algorithm, named Mining Uncertain High-Utility Itemsets (MUHUI), is proposed to efficiently discover potential high-utility itemsets (PHUIs) in uncertain data. Based on the probability-utility-list (PU-list) structure, the MUHUI algorithm directly mines PHUIs without generating candidates, and can avoid constructing PU-lists for numerous unpromising itemsets by applying several efficient pruning strategies, which greatly improve its performance. Extensive experiments conducted on both real-life and synthetic datasets show that the proposed algorithm significantly outperforms the state-of-the-art PHUI-List algorithm in terms of efficiency and scalability, and that the proposed MUHUI algorithm scales well when mining PHUIs in large-scale uncertain datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call