Abstract

We concern the problem of learning a Mahalanobis distance metric for improving nearest neighbor classification. Our work is built upon the large margin nearest neighbor (LMNN) classification framework. Due to the semidefiniteness constraint in the optimization problem of LMNN, it is not scalable in terms of the dimensionality of the input data. The original LMNN solver partially alleviates this problem by adopting alternating projection methods instead of standard interior-point methods. Still, at each iteration, the computation complexity is at least O(D3) (D is the dimension of input data). In this work, we propose a column generation based algorithm to solve the LMNN optimization problem much more efficiently. Our algorithm is much more scalable in tha tat each iteration, it does not need full eigen-decomposition. Instead, we only need to find the leading eigen value and its corresponding eigen vector, which is of O(D2) complexity. Experiments show the efficiency and efficacy of our algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.