Abstract

The Shor-Preskill proof of the security of the Bennett-Brassard 1984 (BB84) quantum key distribution protocol relies on the theoretical existence of good classical error-correcting codes with the ``dual-containing'' property. A practical implementation of the BB84 protocol thus requires explicit and efficiently decodable constructions of such codes, which are not known. On the other hand, modern coding theory abounds with non-dual-containing codes with excellent performance and efficient decoding algorithms. We show that the dual-containing constraint can be lifted at a small price: instead of a key distribution protocol, an efficiently implementable key expansion protocol is obtained, capable of increasing the size of a preshared key by a constant factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.