Abstract

Abstract The transversal hypergraph problem asks to enumerate the minimal hitting sets of a hypergraph. If the solutions have bounded size, Eiter and Gottlob [SICOMP'95] gave an algorithm running in output-polynomial time, but whose space requirement also scales with the output. We improve this to polynomial delay and space. Central to our approach is the extension problem, deciding for a set X of vertices whether it is contained in any minimal hitting set. We show that this is one of the first natural problems to be W [ 3 ] -complete. We give an algorithm for the extension problem running in time O ( m | X | + 1 n ) and prove a SETH-lower bound showing that this is close to optimal. We apply our enumeration method to the discovery problem of minimal unique column combinations from data profiling. Our empirical evaluation suggests that the algorithm outperforms its worst-case guarantees on hypergraphs stemming from real-world databases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.