Abstract

Space-time block codes with orthogonal structures typically provide full-diversity reception and simple receiver processing. However, rate-1 orthogonal codes for complex constellations have not been found for more than two transmit antennas. By using a genetic algorithm, rate-1 space-time block codes that accommodate very simple receiver processing at the cost of reduced diversity are designed in this paper for more than two transmit antennas. Simulation results show that evolved codes combined with efficient outer codes provide better performance over fading channels than minimum-decoding-complexity quasiorthogonal codes at typical operating signal-to-noise ratios. When the fading is more severe than Rayleigh fading, the spectral efficiency is specified, and an efficient outer code is used, evolved codes outperform orthogonal space-time block codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.