Abstract

Efficiently computing k-edge connected components in a large graph, G = (V, E), where V is the vertex set and E is the edge set, is a long standing research problem. It is not only fundamental in graph analysis but also crucial in graph search optimization algorithms. Consider existing techniques for computing k-edge connected components are quite time consuming and are unlikely to be scalable for large scale graphs, in this paper we firstly propose a novel graph decomposition paradigm to iteratively decompose a graph G for computing its k-edge connected components such that the number of drilling-down iterations h is bounded by the depth of the k-edge connected components nested together to form G, where h usually is a small integer in practice. Secondly, we devise a novel, efficient threshold-based graph decomposition algorithm, with time complexity O(l × |E|), to decompose a graph G at each iteration, where l usually is a small integer with l « |V|. As a result, our algorithm for computing k-edge connected components significantly improves the time complexity of an existing state-of-the-art technique from O(|V|2|E| + |V|3 log |V|) to O(h × l × |E|). Finally, we conduct extensive performance studies on large real and synthetic graphs. The performance studies demonstrate that our techniques significantly outperform the state-of-the-art solution by several orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.